1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
#include <fstream> #include <sstream> #include <iostream> #include <vector>
#include <opencv2/dnn.hpp> #include <opencv2/imgproc.hpp> #include <opencv2/highgui.hpp>
using namespace cv; using namespace dnn; using namespace std;
float confThreshold = 0.5; float nmsThreshold = 0.4; int inpWidth = 416; int inpHeight = 416; vector<string> classes;
void postprocess(Mat& frame, const vector<Mat>& out);
void drawPred(int classId, float conf, int left, int top, int right, int bottom, Mat& frame);
vector<String> getOutputsNames(const Net& net);
int main(int argc, char** argv) { string classesFile = "coco.names"; ifstream ifs(classesFile.c_str()); string line; while (getline(ifs, line)) classes.push_back(line);
String modelConfiguration = "yolov3-tiny.cfg"; String modelWeights = "yolov3-tiny.weights";
Net net = readNetFromDarknet(modelConfiguration, modelWeights); net.setPreferableBackend(DNN_BACKEND_OPENCV); net.setPreferableTarget(DNN_TARGET_CPU);
string str, outputFile; Mat frame, blob;
static const string kWinName = "Deep learning object detection in OpenCV"; namedWindow(kWinName, WINDOW_NORMAL);
frame = imread("dog.jpg");
blobFromImage(frame, blob, 1/255.0, cv::Size(inpWidth, inpHeight), Scalar(0,0,0), true, false);
net.setInput(blob);
vector<Mat> outs; net.forward(outs, getOutputsNames(net));
postprocess(frame, outs);
vector<double> layersTimes; double freq = getTickFrequency() / 1000; double t = net.getPerfProfile(layersTimes) / freq; string label = format("Inference time for a frame : %.2f ms", t); putText(frame, label, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 0, 255));
Mat detectedFrame; frame.convertTo(detectedFrame, CV_8U);
imshow(kWinName, frame); imwrite("result.jpg",frame); waitKey(0);
return 0; }
void postprocess(Mat& frame, const vector<Mat>& outs) { vector<int> classIds; vector<float> confidences; vector<Rect> boxes;
for (size_t i = 0; i < outs.size(); ++i){ float* data = (float*)outs[i].data; for (int j = 0; j < outs[i].rows; ++j, data += outs[i].cols){ Mat scores = outs[i].row(j).colRange(5, outs[i].cols); Point classIdPoint; double confidence; minMaxLoc(scores, 0, &confidence, 0, &classIdPoint); if (confidence > confThreshold) { int centerX = (int)(data[0] * frame.cols); int centerY = (int)(data[1] * frame.rows); int width = (int)(data[2] * frame.cols); int height = (int)(data[3] * frame.rows); int left = centerX - width / 2; int top = centerY - height / 2;
classIds.push_back(classIdPoint.x); confidences.push_back((float)confidence); boxes.push_back(Rect(left, top, width, height)); } } }
vector<int> indices; NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, indices); for (size_t i = 0; i < indices.size(); ++i){ int idx = indices[i]; Rect box = boxes[idx]; drawPred(classIds[idx], confidences[idx], box.x, box.y, box.x + box.width, box.y + box.height, frame); } }
void drawPred(int classId, float conf, int left, int top, int right, int bottom, Mat& frame) { rectangle(frame, Point(left, top), Point(right, bottom), Scalar(255, 178, 50), 3);
string label = format("%.2f", conf); if (!classes.empty()){ CV_Assert(classId < (int)classes.size()); label = classes[classId] + ":" + label; }
int baseLine; Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine); top = max(top, labelSize.height); rectangle(frame, Point(left, top - round(1.5*labelSize.height)), Point(left + round(1.5*labelSize.width), top + baseLine), Scalar(255, 255, 255), FILLED); putText(frame, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(0,0,0),1); }
vector<String> getOutputsNames(const Net& net) { static vector<String> names; if (names.empty()){ vector<int> outLayers = net.getUnconnectedOutLayers();
vector<String> layersNames = net.getLayerNames();
names.resize(outLayers.size()); for (size_t i = 0; i < outLayers.size(); ++i) names[i] = layersNames[outLayers[i] - 1]; } return names; }
|