OpenCV入门教程06.02:图像特征与特征描述子

索引地址:系列索引

图像特征

图像特征主要有图像的颜色特征、纹理特征、形状特征和空间关系特征。

  • 颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质;
  • 纹理特征也是一种全局特征,它也描述了图像或图像区域所对应景物的表面性质;
  • 形状特征有两类表示方法,一类是轮廓特征,另一类是区域特征,图像的轮廓特征主要针对物体的外边界,而图像的区域特征则关系到整个形状区域;
  • 空间关系特征,是指图像中分割出来的多个目标之间的相互的空间位置或相对方向关系,这些关系也可分为连接/邻接关系、交叠/重叠关系和包含/包容关系等。

颜色特征

颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。

颜色特征描述方法分类

(1)颜色直方图

其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。
最常用的颜色空间:RGB颜色空间、HSV颜色空间。
颜色直方图特征匹配方法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。

(2)颜色集

颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从 RGB颜色空间转化成视觉均衡的颜色空间(如HSV 空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系

(3)颜色矩(颜色分布)

这种方法的数学基础在于:图像中任何的颜色分布均可以用它的矩来表示。此外,由于颜色分布信息主要集中在低阶矩中,因此,仅采用颜色的一阶矩(mean)、二阶矩(variance)和三阶矩(skewness)就足以表达图像的颜色分布。

(4)颜色聚合向量

其核心思想是:将属于直方图每一个柄的像素分成两部分,如果该柄内的某些像素所占据的连续区域的面积大于给定的阈值,则该区域内的像素作为聚合像素,否则作为非聚合像素。

(5)颜色相关图

颜色相关图(color correlogram)是图像颜色分布的另一种表达方式。这种特征不但刻画了某一种颜色的像素数量占整个图像的比例,还反映了不同颜色对之间的空间相关性。实验表明,颜色相关图比颜色直方图和颜色聚合向量具有更高的检索效率,特别是查询空间关系一致的图像。

如果考虑到任何颜色之间的相关性,颜色相关图会变得非常复杂和庞大(空间复杂度为O(N2d))。一种简化的变种是颜色自动相关图(color auto-correlogram),它仅仅考察具有相同颜色的像素间的空间关系,因此空间复杂度降到O(Nd)

纹理特征

纹理特征也是一种全局特征,它也描述了图像或图像区域所对应景物的表面性质。但由于纹理只是一种物体表面的特性,并不能完全反映出物体的本质属性,所以仅仅利用纹理特征是无法获得高层次图像内容的。与颜色特征不同,纹理特征不是基于像素点的特征,它需要在包含多个像素点的区域中进行统计计算。在模式匹配中,这种区域性的特征具有较大的优越性,不会由于局部的偏差而无法匹配成功。作为一种统计特征,纹理特征常具有旋转不变性,并且对于噪声有较强的抵抗能力。但是,纹理特征也有其缺点,一个很明显的缺点是当图像的分辨率变化的时候,所计算出来的纹理可能会有较大偏差。另外,由于有可能受到光照、反射情况的影响,从2-D图像中反映出来的纹理不一定是3-D物体表面真实的纹理。

例如,水中的倒影,光滑的金属面互相反射造成的影响等都会导致纹理的变化。由于这些不是物体本身的特性,因而将纹理信息应用于检索时,有时这些虚假的纹理会对检索造成“误导”。
注:引入纹理语义分层分析。

在检索具有粗细、疏密等方面较大差别的纹理图像时,利用纹理特征是一种有效的方法。但当纹理之间的粗细、疏密等易于分辨的信息之间相差不大的时候,通常的纹理特征很难准确地反映出人的视觉感觉不同的纹理之间的差别。

纹理特征描述方法分类

(1)统计方法:

统计方法的典型代表是一种称为灰度共生矩阵GLCM的纹理特征分析方法Gotlieb 和 Kreyszig 等人在研究共生矩阵中各种统计特征基础上,通过实验,得出灰度共生矩阵的四个关键特征:能量、惯量、熵和相关性。统计方法中另一种典型方法,则是从图像的自相关函数(即图像的能量谱函数)提取纹理特征,即通过对图像的能量谱函数的计算,提取纹理的粗细度及方向性等特征参数

(2)几何方法:

所谓几何法,是建立在纹理基元(基本的纹理元素)理论基础上的一种纹理特征分析方法。纹理基元理论认为,复杂的纹理可以由若干简单的纹理基元以一定的有规律的形式重复排列构成。
  在几何法中,比较有影响的算法有两种:Voronio 棋盘格特征法和结构法。

(3)模型法:

模型法以图像的构造模型为基础,采用模型的参数作为纹理特征。典型的方法是随机场CRF模型法,如马尔可夫(Markov)随机场(MRF)模型法和 Gibbs 随机场模型法。
(4)信号处理法

纹理特征的提取与匹配主要有:灰度共生矩阵、Tamura 纹理特征、自回归纹理模型、小波变换等。

灰度共生矩阵特征提取与匹配主要依赖于能量、惯量、熵和相关性四个参数。Tamura 纹理特征基于人类对纹理的视觉感知心理学研究,提出6种属性,即:粗糙度、对比度、方向度、线像度、规整度和粗略度。自回归纹理模型(simultaneous auto-regressive, SAR)是马尔可夫随机场(MRF)模型的一种应用实例。

形状特征

各种基于形状特征的检索方法都可以比较有效地利用图像中感兴趣的目标来进行检索,但它们也有一些共同的问题,包括:

①目前基于形状的检索方法还缺乏比较完善的数学模型;

②如果目标有变形时检索结果往往不太可靠;

③许多形状特征仅描述了目标局部的性质,要全面描述目标常对计算时间和存储量有较高的要求;

④许多形状特征所反映的目标形状信息与人的直观感觉不完全一致,或者说,特征空间的相似性与人视觉系统感受到的相似性有差别。

另外,从 2-D 图像中表现的 3-D 物体实际上只是物体在空间某一平面的投影,从 2-D 图像中反映出来的形状常不是 3-D 物体真实的形状,由于视点的变化,可能会产生各种失真。

典型的形状特征描述方法

通常情况下,形状特征有两类表示方法,一类是轮廓特征,另一类是区域特征。图像的轮廓特征主要针对物体的外边界,而图像的区域特征则关系到整个形状区域。
几种典型的形状特征描述方法:

(1)边界特征法:

该方法通过对边界特征的描述来获取图像的形状参数。其中Hough 变换检测平行直线方法和边界方向直方图方法是经典方法。Hough 变换是利用图像全局特性而将边缘像素连接起来组成区域封闭边界的一种方法,其基本思想是点—线的对偶性;边界方向直方图法首先微分图像求得图像边缘,然后,做出关于边缘大小和方向的直方图,通常的方法是构造图像灰度梯度方向矩阵。

(2)傅里叶形状描述符法:

傅里叶形状描述符(Fourier shape deors)基本思想是用物体边界的傅里叶变换作为形状描述,利用区域边界的封闭性和周期性,将二维问题转化为一维问题。
由边界点导出三种形状表达,分别是曲率函数、质心距离、复坐标函数。

(3)几何参数法:

形状的表达和匹配采用更为简单的区域特征描述方法,例如采用有关形状定量测度(如矩、面积、周长等)的形状参数法(shape factor)。在 QBIC 系统中,便是利用圆度、偏心率、主轴方向和代数不变矩等几何参数,进行基于形状特征的图像检索。

需要说明的是,形状参数的提取,必须以图像处理及图像分割为前提,参数的准确性必然受到分割效果的影响,对分割效果很差的图像,形状参数甚至无法提取。

(4)形状不变矩法:

利用目标所占区域的矩作为形状描述参数。

(5)其它方法

近年来,在形状的表示和匹配方面的工作还包括有限元法(Finite Element Method 或 FEM)、旋转函数(Turning )和小波描述符(Wavelet Deor)等方法。

空间关系特征

所谓空间关系,是指图像中分割出来的多个目标之间的相互的空间位置或相对方向关系,这些关系也可分为连接/邻接关系、交叠/重叠关系和包含/包容关系等。通常空间位置信息可以分为两类:相对空间位置信息和绝对空间位置信息。前一种关系强调的是目标之间的相对情况,如上下左右关系等,后一种关系强调的是目标之间的距离大小以及方位。显而易见,由绝对空间位置可推出相对空间位置,但表达相对空间位置信息常比较简单。
空间关系特征的使用可加强对图像内容的描述区分能力,但空间关系特征常对图像或目标的旋转、反转、尺度变化等比较敏感。另外,实际应用中,仅仅利用空间信息往往是不够的,不能有效准确地表达场景信息。为了检索,除使用空间关系特征外,还需要其它特征来配合。

空间关系特征提取与匹配方法

提取图像空间关系特征可以有两种方法:一种方法是首先对图像进行自动分割,划分出图像中所包含的对象或颜色区域,然后根据这些区域提取图像特征,并建立索引;另一种方法则简单地将图像均匀地划分为若干规则子块,然后对每个图像子块提取特征,并建立索引。

示例

姿态估计问题:确定某一三维目标物体的方位指向问题。姿态估计在机器人视觉、动作跟踪和单照相机定标等很多领域都有应用。

在不同领域用于姿态估计的传感器是不一样的,在这里主要讲基于视觉的姿态估计。

基于视觉的姿态估计根据使用的摄像机数目又可分为单目视觉姿态估计和多目视觉姿态估计。根据算法的不同又可分为基于模型的姿态估计和基于学习的姿态估计。

(1)基于模型的姿态估计方法

基于模型的方法通常利用物体的几何关系或者物体的特征点来估计。其基本思想是利用某种几何模型或结构来表示物体的结构和形状,并通过提取某些物体特征,在模型和图像之间建立起对应关系,然后通过几何或者其它方法实现物体空间姿态的估计。这里所使用的模型既可能是简单的几何形体,如平面、圆柱,也可能是某种几何结构,也可能是通过激光扫描或其它方法获得的三维模型。

基于模型的姿态估计方法是通过比对真实图像和合成图像,进行相似度计算更新物体姿态。目前基于模型的方法为了避免在全局状态空间中进行优化搜索,一般都将优化问题先降解成多个局部特征的匹配问题,非常依赖于局部特征的准确检测。当噪声较大无法提取准确的局部特征的时候,该方法的鲁棒性受到很大影响。

(2)基于学习的姿态估计方法

基于学习的方法借助于机器学习(machine learning)方法,从事先获取的不同姿态下的训练样本中学习二维观测与三维姿态之间的对应关系,并将学习得到的决策规则或回归函数应用于样本,所得结果作为对样本的姿态估计。基于学习的方法一般采用全局观测特征,不需检测或识别物体的局部特征,具有较好的鲁棒性。其缺点是由于无法获取在高维空间中进行连续估计所需要的密集采样,因此无法保证姿态估计的精度与连续性。

基于学习的姿态估计方法源于姿态识别方法的思想。姿态识别需要预先定义多个姿态类别,每个类别包含了一定的姿态范围;然后为每个姿态类别标注若干训练样本,通过模式分类的方法训练姿态分类器以实现姿态识别。

这一类方法并不需要对物体进行建模,一般通过图像的全局特征进行匹配分析,可以有效的避免局部特征方法在复杂姿态和遮挡关系情况下出现的特征匹配歧义性问题。然而姿态识别方法只能将姿态划分到事先定义的几个姿态类别中,并不能对姿态进行连续的精确的估计。

基于学习的方法一般采用全局观测特征,可以保证算法具有较好的鲁棒性。然而这一类方法的姿态估计精度很大程度依赖于训练的充分程度。要想比较精确地得到二维观测与三维姿态之间的对应关系,就必须获取足够密集的样本来学习决策规则和回归函数。而一般来说所需要样本的数量是随状态空间的维度指数级增加的,对于高维状态空间,事实上不可能获取进行精确估计所需要的密集采样。因此,无法得到密集采样而难以保证估计的精度与连续性,是基于学习的姿态估计方法无法克服的根本困难。

和姿态识别等典型的模式分类问题不同的是,姿态估计输出的是一个高维的姿态向量,而不是某个类别的类标。因此这一类方法需要学习的是一个从高维观测向量到高维姿态向量的映射,目前这在机器学习领域中还是一个非常困难的问题。

图像特征提取

特征是描述模式的最佳方式,我们通常认为特征的各个维度能够从不同的角度描述模式,在理想情况下,维度之间是互补完备的。

特征提取的主要目的是降维。特征抽取的主要思想是将原始样本投影到一个低维特征空间,得到最能反应样本本质或进行样本区分的低维样本特征。

一般图像特征可以分为四类:直观性特征、灰度统计特征、变换系数特征与代数特征。

直观性特征主要指几何特征,几何特征比较稳定,受人脸的姿态变化与光照条件等因素的影响小,但不易抽取,而且测量精度不高,与图像处理技术密切相关。

代数特征是基于统计学习方法抽取的特征。代数特征具有较高的识别精度,代数特征抽取方法又可以分为两类:一种是线性投影特征抽取方法;另外一种是非线性特征抽取方法。

习惯上,将基于主成分分析和Fisher线性鉴别分析所获得的特征抽取方法,统称为线性投影分析。

线性投影分析的特征抽取方法

线性投影分析的特征抽取方法的基本思想是根据一定的性能目标来寻找一线性变换,把原始信号数据压缩到一个低维子空间,使数据在子空间中的分布更加紧凑,为数据的更好描述提供手段,同时计算的复杂度得到大大降低。在线性投影分析中,以主成分分析(PCA,或称K-L变换)和Fisher线性鉴别分析(LDA)最具代表性,围绕这两种方法所形成的特征抽取算法,已成为模式识别领域中最为经典和广泛使用的方法。

线性投影分析法的主要缺点为:需要对大量的已有样本进行学习,且对定位、光照与物体非线性形变敏感,因而采集条件对识别性能影响较大。

非线性特征抽取方法

非线性特征抽取方法也是研究的热点之一。“核技巧”最早应用在SVM中,KPCA和KFA是“核技巧”的推广应用。

核投影方法的基本思想是将原样本空间中的样本通过某种形式的非线性映射,变换到一个高维甚至无穷维的空间,并借助于核技巧在新的空间中应用线性的分析方法求解。由于新空间中的线性方向也对应原样本空间的非线性方向,所以基于核的投影分析得出的投影方向也对应原样本空间的非线性方向。

核投影方法也有一些缺点:

几何意义不明确,无法知道样本在非显式映射后变成了什么分布模式;核函数中参数的选取没有相应选择标准,大多数只能采取经验参数选取;不适合训练样本很多的情况,原因是经过核映射后,样本的维数等于训练样本的个数,如果训练样本数目很大,核映射后的向量维数将会很高,并将遇到计算量上的难题。

就应用领域来说,KPCA远没有PCA应用的广泛。如果作为一般性的降维KPCA确实比PCA效果好,特别是特征空间不是一般的欧式空间的时候更为明显。但PCA可以通过大量的自然图片学习一个子空间,但是KPCA做不到。

变换系数特征指先对图像进行Fourier变换、小波变换等,得到的系数后作为特征进行识别

特征描述子

图像特征点描述子是很多实际应用的基础,在多幅图像的配准利用多幅二维图像进行三维重建、恢复场景三维结构,这些应用在建立图像之间点与点之间的对应关系通常都依赖于一个优秀的局部图像特征点描述子。尤其是近年来对复杂场景冲目标跟踪的应用中,基于目标图像特征点的跟踪能够有效解决目标被遮挡、形变等比较复杂的情况,受到越来越多研究者的关注。

第一类图像特征点描述子

SIFT

SIFT(尺度不变特征转换),此算法由David Lowe在1999年所发表,2004年完善总结。是一种计算机视觉的算法,用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置、尺度、旋转不变量。自它提出以来,很快在物体识别、宽基线图像匹配、三维重建、图像检索中得到了应用,局部图像特征描述子在计算机视觉领域内也得到了更加广泛的关注,涌现了一大批各具特色的局部图像特征描述子。

SURF

SURF(加速稳健特征)是Hebert Bay在ECCV2006年提出的SIFT算法加速版,在适中的条件下完成两幅图像中物体的匹配基本实现了实时处理。它的速度是SIFT的3-7倍,大部分情况下它和SIFT的性能相当,因此它在很多应用中得到了应用,尤其是对运行时间要求高的场合。

BRISK/SBRISK

BRISK(二进制鲁棒的不变尺度关键点),是ICCV2011年提出的图像特点点描述子,2014年提出加速版SBRISK。它具有较好的旋转不变性、尺度不变性及鲁棒性。在对有较大模糊的图像配准时,BRISK算法在其中表现最为出色。

KAZE/AKAZE

KAZE是ECCV2012提出的一种比SIFT更稳定的特征检测算法,KAZE的取名是为了纪念尺度空间分析的开创者――日本学者Iijima。KAZE是日语‘风’的谐音,寓意是就像风的形成是空气在空间中非线性的流动过程一样,KAZE特征检测是在图像域中进行非线性扩散处理的过程。AKAZE 是加速版KAZE特征,即Accelerated KAZE Features。

检测结果

其中,图1左上角原图为1920 * 1080的高清图像,从检测结果可以看出,第一类图像特征点描述子中,BRISK是速度最快的,在时间效率上依次是BRISK>SURF> AKAZE>SIFT>KAZE,SURF则是特征点最丰富的。

第二类图像特征点描述子

MSER

MSER(最大稳定极值区域)是一种用于在图像中进行斑点检测的方法。这个方法由Matas等人于BMVC2002年提出,用于在两个不同视角的图片中寻找对应关系。这种方法从图像中提取全面的元素对应关系,有助于宽基线匹配,以及更好的立体匹配和物体识别算法。该特征点描述子在具有相同阈值范围内所支持的区域才会被选择;无需任何平滑处理就可以实现多尺度检测,即小的和大的结构都可以被检测到。

ORB/ORBSLAM

ORB(ORiented Brief)是ICCV2011年提出的新的特征点描述子, 它是在BRIEF基础上引入了方向的计算方法,并在点对的挑选上使用贪婪搜索算法,挑出了一些区分性强的点对用来描述二进制串。主要解决了BRIEF在噪声敏感、旋转不变性方面的问题。BRIEF (Binary Robust Independent Elementary Features) 则是ECCV2010年提出,利用局部图像邻域内随机点对的灰度大小关系来建立局部图像特征描述子,得到的二值特征描述子不仅匹配速度快,而且存储要求内存低,因此手机应用中具有很好的应用前景。优点在于速度,缺点也相当明显:不具备旋转不变性;对噪声敏感;不具备尺度不变性。ORBSLAM是2015年提出的比较完备的单目slam算法,主要是一个基于特征点地图的应用。它对关键帧做了半稠密场景重建。

检测结果

检测结果显示,MSER、ORB特征描述子均有很高的检测效率,相对于第一类特征描述子,更容易满足对于实时性要求高的应用,在特定的场合应用中,这两类描述子应用广泛,例如在点匹配的目标跟踪上,由于帧率的高速,目标在当前帧和下一帧中的尺度变化很小,利用ORB特征点来实现跟踪相对于其它所有特征点来说,具有不容忽视的巨大优势。

第三类图像特征点描述子

第三类特征点描述子总述

第三类特征点是一些不具有尺度变换或方向变换不变性的描述子,它们主要1994年提出的GFTT(Good Features To Track)、2006年FAST(Features From Accelerated Segment Test)、2008年Star,以及SimpleBlob特征点描述子等等。它们的提出时间都较早,随着对图像特征点描述子研究的深入,不少研究者在此基础上不断改良这些特征描述,提高它们的功能。当然,计算的时间复杂度也随之提高,在具体表现上,性能仍不及上述的第一类、第二类描述子。不过值得注意的是,它们的优势主要体现在运算速度上,在先验知识比较丰富的具体应用中,这些图像特征描述子在时间效率上往往占有极大优势。

检测结果

图2检测结果显示,FAST特征点检测速度快,且数量丰富,SimpleBlob则数量稀少。GFTT以及STAR速度快,在特征点的跟踪上有着极好的性能。

总结

在实际应用中,根据不同场景的具体情况,不同的特征点都有不同的优势,例如第一类图像特征点描述子在对精度要求较高而不要求实时性的要求中表现出极好的性能;第二类特征描述子则在特定场合能够很好的协调精度与速度之间的关系;而第三类特征描述子则主要在时间效率上占有极大优势,适合于对实时性要求较高的场景应用。随着研究的不断深入,已有的图像特征点描述子不断的被改良,新的图像特征点描述子也不断被提出,在实际应用中也发挥着越来越重要的作用。


OpenCV入门教程06.02:图像特征与特征描述子
https://blog.jackeylea.com/opencv/introduction-of-image-feature/
作者
JackeyLea
发布于
2020年9月19日
许可协议